
Module Leader
Lecturers
Timing and Structure
Michaelmas term. 14 lectures + 2 Exercise Classes/Practical Demonstrations. Assessment: 100% exam.
Aims
The aims of the course are to:
- introduce a range of modern functional materials and devices emphasising their processing, properties and limitations.
- introduce principles to describe the origins of the electronic, optical, and magnetic properties of materials, and to explore structure-property relationships for bulk, thin film and nano-materials.
- discuss how these properties can be characterised and engineered for applications ranging from bulk superconductors to piezoelectric sensors, integrated CMOS, solid state lighting, displays and non-volatile memory.
- provide analysis of the key issues shaping the field and the key technologies reshaping society.
Objectives
As specific objectives, by the end of the course students should be able to:
- appreciate the range and diversity of modern functional materials.
- understand band diagrams and basic implications of quantum mechanics.
- understand qualitatively the origin of ferromagnetic and superconducting order in materials and how this results in useful materials properties.
- understand how extrinsic and intrinsic factors affect the performance of magnetic, superconducting and electrical materials.
- be able to apply their understanding of functional materials to making materials selection decisions.
- understand ferroic, non-linear response materials and the underlying phase transitions.
- understand interface behaviour and basic junctions as the basis for semiconductor device engineering.
- understand size-effects and how materials structure and properties can be controlled from the bulk to thin films and down to the nanoscale.
- understand manufacturing and characterisation requirements of these materials.
- identify current and future materials for a range of state-of-the-art sensor, integrated circuit, lighting, display and memory technologies.
Content
Magnetic, Superconducting and Electrical Materials (7L+ 1, Dr J Durrell and Dr M Ainslie)
- Basics: Recap of magnetic and electrical fields in materials
(1L – flipped classroom: worksheet to study before lecture) - Magnetic Materials and Applications (2L);
- Superconducting Materials and Applications (2L);
- Electrical and Multi-ferroic Materials and Applications (2L);
- Guided Classwork Exercise and Superconductivity Demonstration (1L)
Optoelectronic materials and devices (7L + 1, Prof S Hofmann)
- Bonds and Bands in Solids (1L)
- Mind the Gap: Semiconductors & Insulators (1L)
- Interface is the Device: from the field effect transistor to nano electromechanical systems (1L)
- Let there be light: light emitting diodes and solid-state lasers (1L)
- Displays and Large Area Electronic Materials (1L)
- Emerging nanomaterials – examples of novel metrology, process and device technology (2L)
- Guided Classwork Exercise and EE lab and clean room tour (1L)
Booklists
Coey J.M.D., ‘Magnetism and Magnetic Materials’, CUP (NA166).
Available online to CUED students [https://www.cambridge.org/core/books/magnetism-and-magnetic-materials/AD...
‘Superconductivity’. Poole (Elsevier)
Available online to CUED students: [https://cam.userservices.exlibrisgroup.com/view/action/uresolver.do?oper...
Braithwaite N. and Weaver G., ‘Electronic Materials’, Butterworths (JA179)
Ohring M., The Materials Science of Thin Films (JA204)
Kasap S.O., ‘Principles of Electronic Materials and Devices’, McGraw-Hill
Useful as a simple guide on quantum mechanics :
Allison J., ‘Electronic Engineering Semiconducting Devices’, McGraw-Hill (NR290)
Campbell S.A., ‘Science and Engineering of Microelectronic Fabrication’ (OUP)
Plummer J. D., Silicon VLSI technology (NQ79)
Dresselhaus et al., Topics in Applied Physics, Carbon Nanotubes, DOI: 10.1007/3-540-39947-X
Avouris et al., 2D Materials: Properties and Devices, https://doi.org/10.1017/9781316681619 (available online via UCam library)
Reference:
Kittel C., ‘Introduction to Solid State Physics’ (Wiley)
Elliott S.R., ‘Physics and Chemistry of Solids’ (Wiley)
Madou M. J., Fundamentals of Microfabrication (DM.7&8 Folio)
Examination Guidelines
Please refer to Form & conduct of the examinations.
UK-SPEC
This syllabus contributes to the following areas of the UK-SPEC standard:
Toggle display of UK-SPEC areas.
Last modified: 23/05/2020 17:38